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• All practical cryptographic constructions rely on hardness assumptions.

• Public-key cryptography (PKC) - each party has distinct public keys and 
secret keys.

• PKC uses functions which are easy to evaluate with the public key (e.g. 
encrypt), but hard to invert (e.g. decrypt), unless you have the secret key.

• Current PKC schemes - hardness comes from Integer Factorization or 
Discrete Logarithm Problems.
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Integer Factorization
 

Given an integer      which is the 
product of two primes                    , 

find     and    .

Discrete Logarithm Problem
 

Given a number      which is a 
number     to a power     , (               ), 

find    .
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• It turns out these problems are not hard (Shor, 1994).

• Meaning all cryptography using them is broken.

• Luckily, they can only be broken with use of                  
a large-scale universal quantum computer.

• Such devices do not exist yet, but are 10-30 years away.

• Post-quantum cryptography refers to new public-key schemes which rely 
on newer quantum resistant hard problems.
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• Elliptic curves are certain kinds of algebraic groups.

• Structure-preserving maps between elliptic curves are called isogenies.

• Isogeny-based cryptography is a branch of PKC where underlying hard 
problems relate to isogenies.

• For example, given two elliptic curves, it can be hard to find an isogeny (of 
a given degree) between them.
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Pros Cons

Small keys

Malleable

Slow

Algebraic complexity
(less confidence in security)

Isogeny-based digital signature 
scheme SQISign was entered into 

the NIST post-quantum 
“competition” with the potential of 
being chosen to be standardized.
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Aims of my research:

• Study the hardness of the underlying problems to improve confidence in 
isogenies, via algorithmic reductions.

• Explore new ways of applying mathematical results of quaternion algebras 
to isogeny-based cryptography.



An introduction to isogeny-based 
cryptography

Disclaimer:    Using simplified, very imprecise, definitions.
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Elliptic curves over        are sets of points solving an equation.

Points form a group.

                   lie on line.

Elliptic curves are isomorphic             if there exists a group isomorphism.

The   -invariant is an isomorphism invariant.

We only care about supersingular elliptic curves (which I won’t define).
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The degree of an isogeny is the size of its kernel.

Isogenies can be composed/decomposed, and degrees are multiplicative.
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An     - isogeny graph is a graph where,

Vertices = Supersingular elliptic curves 

up to isomorphism,

Edges = Isogenies of degree    together 

with it’s dual, up to composition with 

isomorphisms.

All isogeny-based cryptographic 

schemes walk around in these graphs.
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Example – Key Exchange

Detail Omitted - In step 3, how does Alice “evaluate” their isogeny

                            from a different curve       in a commutative way?

Public starting curve

1.  Alice pick a random 
secret isogeny 

1.  Bob does the same 
picking secret        

2.  Alice publishes codomain 
curve as her public key

2.  Bob does the same 
publishing

3.  Bob takes Alice’s public key 
and applies his secret isogeny

3.  Alice takes Bob’s public key 
and applies his secret isogeny

4. They both arrive at the same 
curve - a shared secret for 

further communication

i.e. Alice and Bob who have never interacted before, 
want to talk without anyone listening in. 

(                                                                          )



Quaternion Algebras



Fix the same large prime     as before.    

Consider the rational numbers      extended by elements    and   .
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Quaternions have (reduced) norm and trace given by,

Any quaternion             with integral norm and trace                                  is a quaternion integer.
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It is an order if it contains     and is closed under multiplication.

A maximal order is an order, not contained within any larger order. 

An ideal of an order      is an integral lattice which is fully contained within the order              .

Ideals have a notion of norm, an integer representing their size,                       .   

For a prime    , there are always           norm    ideals within a maximal order     .
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A quaternion   -ideal graph has:

Vertices = Maximal orders up to isomorphism,

Edges = Ideals between orders, of norm    .

For                  ,            it looks like …
This looks familiar! The    -isogeny graph was … 

graph isomorphism

This is the Deuring Correspondence relating the two worlds of isogenies and quaternions.

(almost)

More Graphs?



What I’m trying to achieve…

Finding best algorithms to solve the Quaternion Embedding Problem.
Given a maximal order      find an element             of prescribed trace    and norm     .

Hardness of this problem gives arguments for the hardness of isogeny problems in 
general.

Finding shortest norm      ideal paths connecting two maximal orders     and     .
This would result in major speedups to digital signature scheme SQISign and give better 
estimates to aid security analysis.

Fast constant-time sampling of random ideals of a given norm.
Giving further improvements to SQISign.



Thanks!
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