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Public Key Cryptography – Key Exchanges

BobAlice
Unsecure Channel

👂 Eve

Alice wants a way to communicate with Bob securely.
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Public Key Cryptography – Key Exchanges

BobAlice
Unsecure Channel

👂 Eve

They each have a public key and private key.
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Public Key Cryptography – Key Exchanges

BobAlice
Unsecure Channel

👂 Eve

They send their public keys to each other.
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Public Key Cryptography – Key Exchanges

BobAlice
Unsecure Channel

👂 Eve

Alice uses her private key and Bob’s public key to derive a secret

+       =
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Public Key Cryptography – Key Exchanges

BobAlice
Unsecure Channel

👂 Eve

Similarly, Bob uses his private key and Alice’s public key to derive a secret.

+       = =       +
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Public Key Cryptography – Key Exchanges

BobAlice
Secure Channel

👂 Eve

Alice and Bob may encrypt messages between them with this secret key.

+       = =       +
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Public Key Cryptography – Key Exchanges

BobAlice
Secure Channel

👂 Eve

Eve sees public keys         .
But it must be computationally hard for her to compute the shared secret      .

+       = =       +
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Hard Problems

Eve sees public keys         .
But it must be computationally hard for her to compute the shared secret      .
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Hard Problems

Integer Factorisation Problem

Given an integer 𝑁 which is the
product of two primes (𝑁 = 𝑝 × 𝑞)

Find 𝑝 and 𝑞

Discrete Logarithm Problem

Given a number 𝑁 which is a
number 𝑔 to a power 𝑎 (𝑁 = 𝑔𝑎)

Find 𝑎

(RSA) (Diffie-Hellman / ECC)

Eve sees public keys         .
But it must be computationally hard for her to compute the shared secret      .
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Quantum Computers 😵
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Hard Problems

(RSA) (Diffie-Hellman / ECC)

Eve sees public keys         .
But it must be computationally hard for her to compute the shared secret      .

Integer Factorisation Problem

Given an integer 𝑁 which is the
product of two primes (𝑁 = 𝑝 × 𝑞)

Find 𝑝 and 𝑞

Discrete Logarithm Problem

Given a number 𝑁 which is a
number 𝑔 to a power 𝑎 (𝑁 = 𝑔𝑎)

Find 𝑎
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Integer Factorisation Problem

Given an integer 𝑁 which is the
product of two primes (𝑁 = 𝑝 × 𝑞)

Find 𝑝 and 𝑞

Discrete Logarithm Problem

Given a number 𝑁 which is a
number 𝑔 to a power 𝑎 (𝑁 = 𝑔𝑎)

Find 𝑎

Hard Problems

(RSA) (Diffie-Hellman / ECC)

We need new hard problems …

Eve sees public keys         .
But it must be computationally hard for her to compute the shared secret      .
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Timeline ⌚

16Source: EvolutionQ: Quantum Threat Timeline Report 2020
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Lattices

Hash Functions Multivariate

Error-correcting codes

Isogenies
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Lattices

Isogenies

Hash Functions Multivariate

Error-correcting codes
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Lattices

Standards

Isogenies

Hash Functions Multivariate

Error-correcting codes



2. Intro to Isogenies
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𝑔𝑎𝑏 = (𝑔𝑎)𝑏

Diffie Hellman Key Exchange

BobAlice

👂 Eve

𝑎 ∈ ℤ
𝑔𝑎

𝑔 is a known generator of 𝔽𝑝
∗

Receives 𝑔𝑏

𝑔𝑎𝑏 = (𝑔𝑏)𝑎

𝑏 ∈ ℤ
𝑔𝑏

Receives 𝑔𝑎

𝑔𝑎 , 𝑔𝑏

Doesn’t know 𝑔𝑎𝑏
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Graph Walking Diffie-Hellman
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Graph Walking Diffie-Hellman

23



Graph Walking Diffie-Hellman

My location 
is …

My location 
is …
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Graph Walking Diffie-Hellman
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Graph Walking Diffie-Hellman
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Graph Walking Diffie-Hellman

Eve sees Alice’s point     , and Bob’s point     . She knows where they start      .

Shouldn’t be able to find the secret point       they end up.
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Graph Walking Diffie-Hellman

Eve sees Alice’s point     , and Bob’s point     . She knows where they start      .

Shouldn’t be able to find the secret point       they end up. Not a hard problem
Not secure 28
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We need:

• Very large graphs

• A way of traversing the graph, 
without storing/computing the 
whole thing

• Vertex labels to look random

• Taking a short walk gets you 
somewhere uniformly random

• It’s hard to find a walk between two 
given verticies

… isogenies!!

But for some graphs this works!
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We need:

• Very large graphs

• A way of traversing the graph, 
without storing/computing the 
whole thing

• Vertex labels to look random

• Taking a short walk gets you 
somewhere uniformly random

• It’s hard to find a walk between two 
given verticies

… isogenies!!

But for some graphs this works!



Isogenies

• An elliptic curve is set of points (𝑥, 𝑦) satisfying an equation:

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏
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Isogenies

• An elliptic curve is set of points (𝑥, 𝑦) satisfying an equation:

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

• Over a field 𝐹, the set of points on an elliptic curve form an 
algebraic group.
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Isogenies

• An elliptic curve is set of points (𝑥, 𝑦) satisfying an equation:

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

• Over a field 𝐹, the set of points on an elliptic curve form an 
algebraic group.

• An isogeny is a non-zero rational map between two elliptic 
curves that preserves the group structure.  𝜑 ∶ 𝐸 → 𝐸′
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Isogenies

• An elliptic curve is set of points (𝑥, 𝑦) satisfying an equation:

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

• Over a field 𝐹, the set of points on an elliptic curve form an 
algebraic group.

• An isogeny is a non-zero rational map between two elliptic 
curves that preserves the group structure.  𝜑 ∶ 𝐸 → 𝐸′

• The degree of an isogeny is the size of it’s kernel, i.e. the number 
of points (𝑥, 𝑦) on 𝐸 that get mapped to the identity on 𝐸′
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Isogenies
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Example:



Isogenies
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Example:

Let 𝑝 = 419, and 𝐸1, 𝐸2 be elliptic curves over 𝔽𝑝 defined by:

𝐸1: 𝑦2 = 𝑥3 + 51𝑥2 + 𝑥 𝐸2: 𝑦2 = 𝑥3 + 9𝑥2 + 𝑥



Isogenies
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Example:

Let 𝑝 = 419, and 𝐸1, 𝐸2 be elliptic curves over 𝔽𝑝 defined by:

𝐸1: 𝑦2 = 𝑥3 + 51𝑥2 + 𝑥 𝐸2: 𝑦2 = 𝑥3 + 9𝑥2 + 𝑥

Then the following map is an isogeny:

𝜑 ∶ 𝐸1 → 𝐸2

𝜑 ∶ 𝑥, 𝑦 ↦
𝑥3 − 183𝑥2 + 73𝑥 + 30

𝑥 + 118 2
, 𝑦

𝑥3 − 65𝑥2 − 104𝑥 + 174

𝑥 + 118 3



Isogeny Graphs
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Isogeny Graphs

• Two elliptic curves which are isomorphic are said to be in the 
same isomorphism class.
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Isogeny Graphs

• Two elliptic curves which are isomorphic are said to be in the 
same isomorphism class.

• We can think of isogenies acting on isomorphism classes.

46

Mapping one isomorphism class to another isomorphism class.



Isogeny Graphs

• Two elliptic curves which are isomorphic are said to be in the 
same isomorphism class.

• We can think of isogenies acting on isomorphism classes.

• Every isomorphism class has a j-invariant. The same for all 
curves in the class. For a curve in form 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 :

47

𝑗 𝐸 = 1728
4𝑎3

4𝑎3 + 27𝑏2

Mapping one isomorphism class to another isomorphism class.



Isogeny Graphs

• A k-isogeny graph is a graph where:
Vertices = isomorphism classes of elliptic curves (labeled by j-invariants)

Edges = degree 𝑘 isogenies (and their duals) between classes of elliptic 
curves over 𝔽𝑝𝑛
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Isogeny Graphs

• A k-isogeny graph is a graph where:
Vertices = isomorphism classes of elliptic curves (labeled by j-invariants)

Edges = degree 𝑘 isogenies (and their duals) between classes of elliptic 
curves over 𝔽𝑝𝑛
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Isogeny Graphs

• A k-isogeny graph is a graph where:
Vertices = isomorphism classes of elliptic curves (labeled by j-invariants)

Edges = degree 𝑘 isogenies (and their duals) between classes of elliptic 
curves over 𝔽𝑝𝑛

50

• Isogeny graphs satisfy all 
the required properties to 
perform graph walking 
Diffie-Hellman securely



• From each vertex of the isogeny graph you can move                        
in a fixed number of directions.

• But, the isogenies from 𝐸 will have completely different formula to 
the isogenies from a different curve 𝐸′.

• To fix this, there is a method for constructing isogenies from ideals 
of the ideal class group 𝐶𝑙 𝒪 .

Given an ideal class 𝔞 ∈ 𝐶𝑙 𝒪 and curve 𝐸 we can compute an isogeny:
𝜑 ∶ 𝐸 → 𝐸/ 𝔞

Walking the graph
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• From each vertex of the isogeny graph you can move                        
in a fixed number of directions.

• But, the isogenies from 𝐸 will have completely different formula to 
the isogenies from a different curve 𝐸′.

• To fix this, there is a method for constructing isogenies from ideals 
of the ideal class group 𝐶𝑙 𝒪 .

Given an ideal class 𝔞 ∈ 𝐶𝑙 𝒪 and curve 𝐸 we can compute an isogeny:
𝜑 ∶ 𝐸 → 𝐸/ 𝔞

Walking the graph
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Walking the graph

• From each vertex of the isogeny graph you can move                        
in a fixed number of directions.

• But, the isogenies from 𝐸 will have completely different formula to 
the isogenies from a different curve 𝐸′.

• To fix this, there is a method for constructing isogeny walks from 
ideals of the ideal class group 𝐶𝑙 𝒪 . *

Given an ideal class 𝔞 ∈ 𝐶𝑙 𝒪 and curve 𝐸 we can compute an isogeny:
𝜑 ∶ 𝐸 → 𝐸/ 𝔞

53
* Exception: For supersingular curves, to have a group structure you must restrict to a smaller set of (oriented) curves.



Class Group Actions

• Let 𝐸𝑙𝑙(𝑝) be the vertex set of the graph.
i.e. isomorphism classes of curves over  𝔽𝑝𝑛 for prime  𝑝.

• Isogenies act on this set via a map

∗ ∶ 𝐶𝑙 𝒪 × 𝐸𝑙𝑙 𝑝 → 𝐸𝑙𝑙 𝑝

𝔞 ∗ 𝐸 = 𝐸′
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Diffie Hellman Key Exchange

Classical Diffie-Hellman also has a group action:

† ∶ ℤ × 𝔽𝑝 → 𝔽𝑝

𝑎 † 𝑔 = 𝑔𝑎
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Diffie Hellman Key Exchange

BobAlice

👂 Eve

𝑎 ∈ ℤ
𝑔𝑎

𝑔 is a known generator of 𝔽𝑝
∗

Receives 𝑔𝑏

𝑔𝑎𝑏 = (𝑔𝑏)𝑎

𝑏 ∈ ℤ
𝑔𝑏

Receives 𝑔𝑎

𝑔𝑎𝑏 = (𝑔𝑎)𝑏
𝑔𝑎 , 𝑔𝑏

Doesn’t know 𝑔𝑎𝑏
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Diffie Hellman Key Exchange

BobAlice

👂 Eve

𝑎 ∈ ℤ
𝒂 † 𝒈

𝑔 is a known generator of 𝔽𝑝
∗

Receives 𝒃 † 𝒈

𝒂𝒃 † 𝒈 = 𝒂 † (𝒃 † 𝒈)

𝑏 ∈ ℤ
𝒃 † 𝒈
Receives 𝒂 † 𝒈

𝒂𝒃 † 𝒈 = 𝒃 † (𝒂 † 𝒈)𝒂 † 𝒈 , 𝒃 † 𝒈

Doesn’t know 𝒂𝒃 † 𝒈

𝑨𝒄𝒕𝒊𝒐𝒏: 𝒂 † 𝒈 = 𝒈𝒂
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Isogeny-Based Key Exchange

BobAlice

👂 Eve

𝔞 ∈ 𝐶𝑙 𝒪
𝔞 ∗ 𝐸

𝐸 is a known starting curve.

Receives 𝔟 ∗ 𝐸

𝔞𝔟 ∗ 𝐸 = 𝔞 ∗ 𝔟 ∗ 𝐸

𝔟 ∈ 𝐶𝑙 𝒪
𝔟 ∗ 𝐸

Receives 𝔞 ∗ 𝐸

𝔞𝔟 ∗ 𝐸
= 𝔟 ∗ 𝔞 ∗ 𝐸

𝔞 ∗ 𝐸 , 𝔟 ∗ 𝐸

Doesn’t know 𝔞𝔟 ∗ 𝐸

𝑨𝒄𝒕𝒊𝒐𝒏: 𝖆 ∗ 𝑬 = 𝑬’
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3. Breaking Decisional DDH
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Diffie-Hellman Problems
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Diffie-Hellman Problems

Classical Diffie-Hellman Problem:

Given 𝑔, 𝑔𝑎 , 𝑔𝑏 find 𝑔𝑎𝑏.

❌ Not secure against quantum computers!
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Diffie-Hellman Problems

Classical Diffie-Hellman Problem:

Given 𝑔, 𝑔𝑎 , 𝑔𝑏 find 𝑔𝑎𝑏.

❌ Not secure against quantum computers!

Diffie-Hellman for Class Group Actions Problem:

Given  𝐸,   𝔞 ∗ 𝐸,  𝔟 ∗ 𝐸 find  𝔞𝔟 ∗ 𝐸.

✅ Secure against quantum computers*.

62* Up to sub-exponential attacks in some cases.



Decisional Diffie-Hellman Problems
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Decisional Diffie-Hellman Problems

Classical Decisional Diffie-Hellman Problem:

Distinguish between distributions  (𝑔𝑎, 𝑔𝑏 , 𝑔𝑎𝑏) and (𝑔𝑎, 𝑔𝑏 , 𝑔𝑐)

DDH-CGA Problem:

Distinguish between distributions  ( 𝔞 ∗ 𝐸, 𝔟 ∗ 𝐸, 𝔞𝔟 ∗ 𝐸) and  
( 𝔞 ∗ 𝐸, 𝔟 ∗ 𝐸, 𝔠 ∗ 𝐸).
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Decisional Diffie-Hellman Problems

Classical Decisional Diffie-Hellman Problem:

Distinguish between distributions  (𝑔𝑎, 𝑔𝑏 , 𝑔𝑎𝑏) and (𝑔𝑎, 𝑔𝑏 , 𝑔𝑐)

Easy to break!

65

Given  (𝑔𝑎 , 𝑔𝑏 , 𝑔𝑐) need to check if we have 𝑔𝑐 in form 𝑔𝑎𝑏 or not.

Notice that if 𝑔𝑎 is a square in 𝔽𝑝
∗ or 𝑔𝑏 is a square, so is 𝑔𝑎𝑏.

Then 𝑔𝑐 is not a square ⇒ 𝑔𝑐 not in form 𝑔𝑎𝑏.



Decisional Diffie-Hellman Problems

Classical Decisional Diffie-Hellman Problem:

Distinguish between distributions  (𝑔𝑎, 𝑔𝑏 , 𝑔𝑎𝑏) and (𝑔𝑎, 𝑔𝑏 , 𝑔𝑐)
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Given  (𝑔𝑎 , 𝑔𝑏 , 𝑔𝑐) need to check if we have 𝑔𝑐 in form 𝑔𝑎𝑏 or not.

Notice that if 𝑔𝑎 is a square in 𝔽𝑝
∗ or 𝑔𝑏 is a square, so is 𝑔𝑎𝑏.

𝑔𝑐 in form 𝑔𝑎𝑏 ⇒
𝑔𝑎

𝑝
⋁

𝑔𝑏

𝑝
=

𝑔𝑐

𝑝

𝑛

𝑝
∶=

1 if 𝑛 is square
−1 if 𝑛 is not a square

0 if 𝑝 divides 𝑛



Decisional Diffie-Hellman Problems

DDH-CGA Problem:

Distinguish between distributions  ( 𝔞 ∗ 𝐸, 𝔟 ∗ 𝐸, 𝔞𝔟 ∗ 𝐸) and  
( 𝔞 ∗ 𝐸, 𝔟 ∗ 𝐸, 𝔠 ∗ 𝐸).

Can we do something similar for DDH-CGA ?
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Decisional Diffie-Hellman Problems

DDH-CGA Problem:

Distinguish between distributions  ( 𝔞 ∗ 𝐸, 𝔟 ∗ 𝐸, 𝔞𝔟 ∗ 𝐸) and  
( 𝔞 ∗ 𝐸, 𝔟 ∗ 𝐸, 𝔠 ∗ 𝐸).

Can we do something similar for DDH-CGA ?

The hardness of this problem underlies the security of several 
protocols built on-top of the CSIDH group action.
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Breaking Ordinary DDH-CGA

Elliptic Curves are either supersingular or ordinary. We care more 
about supersingular curves for cryptography.
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Breaking Ordinary DDH-CGA

Elliptic Curves are either supersingular or ordinary. We care more 
about supersingular curves for cryptography.

In 2020, Castryck, Sotáková and Vercauteren, found an attack 
against DDH-CGA for ordinary elliptic curves.
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Breaking Ordinary DDH-CGA

Elliptic Curves are either supersingular or ordinary. We care more 
about supersingular curves for cryptography.

In 2020, Castryck, Sotáková and Vercauteren, found an attack 
against DDH-CGA for ordinary elliptic curves.

The attack is similar to the attack against Decisional Diffie-
Hellman shown previously.
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Breaking Ordinary DDH-CGA

72

𝐶𝑙 𝒪 = 𝔲1 , 𝔲2 , 𝔲3 , … , 𝔲4 , 𝔲5 , 𝔲6 , … 𝔲7 , 𝔲8 , 𝔲9 , …



Breaking Ordinary DDH-CGA
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𝐶𝑙 𝒪 = 𝔲1 , 𝔲2 , 𝔲3 , … , 𝔲4 , 𝔲5 , 𝔲6 , … 𝔲7 , 𝔲8 , 𝔲9 , …

𝑁 𝔲 ∶=
𝒪

𝔲

‘size’ of 
an ideal

Take Norms
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𝐶𝑙 𝒪 = 𝔲1 , 𝔲2 , 𝔲3 , … , 𝔲4 , 𝔲5 , 𝔲6 , … 𝔲7 , 𝔲8 , 𝔲9 , …

𝑁 𝔲1 , 𝑁 𝔲2 , … 𝑁 𝔲4 , 𝑁 𝔲5 , … 𝑁 𝔲7 , 𝑁 𝔲8 , …

𝑁 𝔲 ∶=
𝒪

𝔲

‘size’ of 
an ideal

Take Norms



Breaking Ordinary DDH-CGA
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𝐶𝑙 𝒪 = 𝔲1 , 𝔲2 , 𝔲3 , … , 𝔲4 , 𝔲5 , 𝔲6 , … 𝔲7 , 𝔲8 , 𝔲9 , …

𝑁 𝔲1 , 𝑁 𝔲2 , … 𝑁 𝔲4 , 𝑁 𝔲5 , … 𝑁 𝔲7 , 𝑁 𝔲8 , …

𝑁 𝔲 ∶=
𝒪

𝔲

‘size’ of 
an ideal

Take Norms

Genera = { }, ,
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Breaking Ordinary DDH-CGA
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𝐶𝑙 𝒪 = 𝔲1 , 𝔲2 , 𝔲3 , … , 𝔲4 , 𝔲5 , 𝔲6 , … 𝔲7 , 𝔲8 , 𝔲9 , …

Evaluate characters  𝜒1, 𝜒2, …
𝜒𝑖 ∶ ℤ → {±1}

𝑁 𝔲1 , 𝑁 𝔲2 , … 𝑁 𝔲4 , 𝑁 𝔲5 , … 𝑁 𝔲7 , 𝑁 𝔲8 , …

𝑁 𝔲 ∶=
𝒪

𝔲

‘size’ of 
an ideal

𝜒1= 1, 𝜒2 = −1, 𝜒3 = 1 𝜒1= −1, 𝜒2 = 1, 𝜒3 = 1 𝜒1= −1, 𝜒2 = 1, 𝜒3 = −1

Take Norms

Genera = { }, ,
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𝐶𝑙 𝒪 = 𝔲1 , 𝔲2 , 𝔲3 , … , 𝔲4 , 𝔲5 , 𝔲6 , … 𝔲7 , 𝔲8 , 𝔲9 , …

Evaluate characters  𝜒1, 𝜒2, …
𝜒𝑖 ∶ ℤ → {±1}

𝑁 𝔲1 , 𝑁 𝔲2 , … 𝑁 𝔲4 , 𝑁 𝔲5 , … 𝑁 𝔲7 , 𝑁 𝔲8 , …

𝑁 𝔲 ∶=
𝒪

𝔲

‘size’ of 
an ideal

𝜒1= 1, 𝜒2 = −1, 𝜒3 = 1 𝜒1= −1, 𝜒2 = 1, 𝜒3 = 1 𝜒1= −1, 𝜒2 = 1, 𝜒3 = −1

Take Norms

Applying characters to 𝑁 𝔲 tell us what genera 𝔲 lies within.   

Genera = { }, ,
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𝐶𝑙 𝒪 = 𝔲1 , 𝔲2 , 𝔲3 , … , 𝔲4 , 𝔲5 , 𝔲6 , … 𝔲7 , 𝔲8 , 𝔲9 , …

Evaluate characters  𝜒1, 𝜒2, …
𝜒𝑖 ∶ ℤ → {±1}

𝑁 𝔲1 , 𝑁 𝔲2 , … 𝑁 𝔲4 , 𝑁 𝔲5 , … 𝑁 𝔲7 , 𝑁 𝔲8 , …

𝑁 𝔲 ∶=
𝒪

𝔲

‘size’ of 
an ideal

𝜒1= 1, 𝜒2 = −1, 𝜒3 = 1 𝜒1= −1, 𝜒2 = 1, 𝜒3 = 1 𝜒1= −1, 𝜒2 = 1, 𝜒3 = −1

Take Norms

Applying characters to 𝑁 𝔲 tell us what genera 𝔲 lies within.   

Genera = { }, ,

If 𝔞𝔟 and 𝔠 lie in different genera, then 𝔞𝔟 ∗ 𝐸 is not in form  𝔠 ∗ 𝐸



Breaking Ordinary DDH-CGA

Q. How do we group ideal classes into ‘genera’?

Q. What are these characters 𝜒𝑖?

Q. Ideal classes 𝔞 are secret. How do we compute 𝜒𝑞 𝑁 𝔞 just from 

public curves 𝐸 and 𝔞 ∗ 𝐸?
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A binary quadratic form is a function of form 𝑓 𝑥, 𝑦 = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 for integers 𝑎, 𝑏, 𝑐.

It has discriminant 𝑏2 − 4𝑎𝑐. If 𝑓 𝑥, 𝑦 = 𝑘 for 𝑥, 𝑦 ∈ ℤ, we say 𝑓 represents 𝑘.
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A binary quadratic form is a function of form 𝑓 𝑥, 𝑦 = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 for integers 𝑎, 𝑏, 𝑐.

It has discriminant 𝑏2 − 4𝑎𝑐. If 𝑓 𝑥, 𝑦 = 𝑘 for 𝑥, 𝑦 ∈ ℤ, we say 𝑓 represents 𝑘.

Two forms are equivalent if they have the same discriminant and there is a change of basis 
between them  𝑥, 𝑦 ↦ (𝛼𝑥 + 𝛽𝑦, 𝛾𝑥 + 𝛿𝑧). Equivalent forms represent the same values.
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A binary quadratic form is a function of form 𝑓 𝑥, 𝑦 = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 for integers 𝑎, 𝑏, 𝑐.
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between them  𝑥, 𝑦 ↦ (𝛼𝑥 + 𝛽𝑦, 𝛾𝑥 + 𝛿𝑧). Equivalent forms represent the same values.

Take forms* of discriminant 𝐷, group them together into equivalence classes. Let 𝐶(𝐷) be 
the set of these classes. It is actually a group. The form class group.

* Actually only primitive positive definite forms.
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A binary quadratic form is a function of form 𝑓 𝑥, 𝑦 = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 for integers 𝑎, 𝑏, 𝑐.

It has discriminant 𝑏2 − 4𝑎𝑐. If 𝑓 𝑥, 𝑦 = 𝑘 for 𝑥, 𝑦 ∈ ℤ, we say 𝑓 represents 𝑘.

Two forms are equivalent if they have the same discriminant and there is a change of basis 
between them  𝑥, 𝑦 ↦ (𝛼𝑥 + 𝛽𝑦, 𝛾𝑥 + 𝛿𝑧). Equivalent forms represent the same values.

Take forms* of discriminant 𝐷, group them together into equivalence classes. Let 𝐶(𝐷) be 
the set of these classes. It is actually a group. The form class group.

Theorem:  There is an equivalence, 𝐶𝑙 𝒪 ≅ 𝐶 𝐷 .

* Actually only primitive positive definite forms.
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A binary quadratic form is a function of form 𝑓 𝑥, 𝑦 = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 for integers 𝑎, 𝑏, 𝑐.

It has discriminant 𝑏2 − 4𝑎𝑐. If 𝑓 𝑥, 𝑦 = 𝑘 for 𝑥, 𝑦 ∈ ℤ, we say 𝑓 represents 𝑘.

Two forms are equivalent if they have the same discriminant and there is a change of basis 
between them  𝑥, 𝑦 ↦ (𝛼𝑥 + 𝛽𝑦, 𝛾𝑥 + 𝛿𝑧). Equivalent forms represent the same values.

Take forms* of discriminant 𝐷, group them together into equivalence classes. Let 𝐶(𝐷) be 
the set of these classes. It is actually a group. The form class group.

Theorem:  There is an equivalence, 𝐶𝑙 𝒪 ≅ 𝐶 𝐷 .

Genera ∶= Classes of quadratic forms classes representing the same set of values.

* Actually only primitive positive definite forms.
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Simplified a lot.
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For [f] ∼ 𝔞 , values represented in f = norms of ideals in [𝔞].

Principal ideals ⟨1⟩ have the set of norms (genera) as squares in ℤ/𝑑ℤ ∗. For other 
ideals/form classes, genera are cosets of set of squares. We decompose ℤ/𝑑ℤ ∗ by CRT.

For primes 𝒒 | 𝜟𝓞 we take 𝝌𝒒 ∶ ℤ → {𝟎, 𝟏} defined by 𝝌𝒒 𝒏 =
𝒏

𝒒

There are exactly 2𝜇 genera where 𝜇 = #characters

⇒ Characters perfectly distinguish between genera

𝜒𝑞 𝑁 𝔞 × 𝜒𝑞 𝑁 𝔟 = 𝜒𝑞 𝑁 𝔞𝔟

Simplified a lot.
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Isogeny graphs have a volcano-like structure, split into layers with a surface and floor. 
Starting from curves 𝐸 and 𝔞 ∗ 𝐸, walk to the floor.

You can recover 
𝑁 𝔞

𝑞
using pairings on 𝑞-torsion points. Details omitted.



Breaking Oriented DDH-CGA

Theorem: Let 𝐸 be an elliptic curve over 𝔽𝑝𝑛. Then:

1. If 𝐸 is ordinary, 𝐸𝑛𝑑(𝐸) is isomorphic to an imaginary quadratic order, 𝒪 = ℤ[𝜔].

2. If 𝐸 is supersingular, 𝐸𝑛𝑑(𝐸) isomorphic to a maximal quaternion order.

Case 1 is where the previous attack applied.

But supersingular curves in case 2 are better for cryptography. How can we 

attack them instead?

For supersingular curves, the class group action is defined differently …

89* specifically, isomorphism 𝐶𝑙 𝒪 ≅ 𝐶 𝐷



Breaking Oriented DDH-CGA
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Breaking Oriented DDH-CGA

An 𝓞-oriented elliptic curve is a pair 𝐸, 𝜄 where 𝜄 ∶ 𝒪 ↪ 𝐸𝑛𝑑 𝐸 is 
an embedding.
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An 𝓞-oriented elliptic curve is a pair 𝐸, 𝜄 where 𝜄 ∶ 𝒪 ↪ 𝐸𝑛𝑑 𝐸 is 
an embedding.

The group action of applying isogenies to 𝓞-oriented curves can 
similarly be defined using 𝐶𝑙 𝒪 . Here 𝒪 is also an imaginary 
quadratic order, just like in the ordinary case.
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Breaking Oriented DDH-CGA

An 𝓞-oriented elliptic curve is a pair 𝐸, 𝜄 where 𝜄 ∶ 𝒪 ↪ 𝐸𝑛𝑑 𝐸 is 
an embedding.

The group action of applying isogenies to 𝓞-oriented curves can 
similarly be defined using 𝐶𝑙 𝒪 . Here 𝒪 is also an imaginary 
quadratic order, just like in the ordinary case.

The DDH-CGA attack generalises to this setting.
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Breaking CSIDH DDH-CGA?

We have attacks against DDH-CGA for ordinary curves, and 
oriented supersingular curves.

Doesn’t apply to CSIDH, which uses ℤ
1+ −𝑝

2
-oriented 

supersingular curves.

Recall characters come from primes dividing Δ𝒪 (ramified). For 
CSIDH, there is only one prime divisor 𝑝. One character. It’s trivial.
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We have attacks against DDH-CGA for ordinary curves, and 
oriented supersingular curves.

Doesn’t apply to CSIDH, which uses ℤ
1+ −𝑝

2
-oriented 

supersingular curves.

Recall characters come from primes dividing Δ𝒪 (ramified). For 
CSIDH, there is only one prime divisor 𝑝. One character. It’s trivial.
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4. Generalizations / Variants
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From Quadratics to Cubics?

While  𝐶𝑙 𝒪 2 ≅
𝐶𝑙 𝒪

𝐶𝑙 𝒪 2 is trivial for CSIDH,  𝐶𝑙 𝒪 3 ≅
𝐶𝑙 𝒪

𝐶𝑙 𝒪 3 is not.
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From Quadratics to Cubics?

While  𝐶𝑙 𝒪 2 ≅
𝐶𝑙 𝒪

𝐶𝑙 𝒪 2 is trivial for CSIDH,  𝐶𝑙 𝒪 3 ≅
𝐶𝑙 𝒪

𝐶𝑙 𝒪 3 is not.

Can we generalise genus theory to get cubes instead of squares?

Consider binary cubic forms:

𝑓 𝑥, 𝑦 = 𝑎𝑥3 + 𝑏𝑦3 + 𝑐𝑥2𝑦 + 𝑑𝑥𝑦2

Cannot decompose sets of values represented by these forms into cosets of 
cubes … genus theory breaks. Then cubic residue characters are not 
consistent across sets of norms of ideal classes.
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Higher Dimensional Genus Theory
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Higher Dimensional Genus Theory

There is a natural generalization of genus theory. To forms in 

more variables:

E.g. For binary quadratic forms:

Genera = Sets of locally isometric lattices.

101

ideal 𝔞 = 𝛼ℤ + 𝛽ℤ ↦ 𝑁(𝛼𝑥 + 𝛽𝑦)/𝑁(𝔞)

𝑓 𝑥1, … , 𝑥𝑛 = ෍

𝑖,𝑗

𝑎𝑖𝑗𝑥𝑖𝑥𝑗

𝐶𝑙 𝒪𝐾 ≅ {𝐾−lattices of order 𝒪𝐾} ≅ 𝐶(Δ𝒪𝐾
)



How about Quaternions?

Recall supersingular curves have endomorphism rings as 
maximal quaternion orders 𝒪, where (left) ideals give isogenies.
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How about Quaternions?

Recall supersingular curves have endomorphism rings as 
maximal quaternion orders 𝒪, where (left) ideals give isogenies.

We have higher dimensional genera. Isometry classes of:

... but there is no known way to construct multiplicative 
characters to distinguish between these genera.

103

𝐶𝑙𝑙𝑒𝑓𝑡 𝒪 ≅ {4−dim lattices of order 𝒪} ≅ Non-degenerate quadratic 
spaces in 4 variables



Lifting to genus 2?

Δ𝒪 = 𝑞1𝑞2 … 𝑞𝑛 each 𝑞𝑖 gives character as before. Want more.

We can extend our field to split these primes?   𝑞𝑖 = 𝑞𝑖
1𝑞𝑖

2

How to apply this to CSIDH?
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Lifting to genus 2?

Δ𝒪 = 𝑞1𝑞2 … 𝑞𝑛 each 𝑞𝑖 gives character as before. Want more.

We can extend our field to split these primes?   𝑞𝑖 = 𝑞𝑖
1𝑞𝑖

2

How to apply this to CSIDH?

… Weil restrictions. Elliptic curves can be lifted to principally 
polarizable abelian surfaces. Endomorphism algebra is a 
quaternion algebra over number field. 

We get splitting. But only for 𝑝 ≡ 1 𝑚𝑜𝑑 4, not for CSIDH.

105

Perhaps we can fix it. The journey continues.



Questions?
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Other Projects/Interests

• Hard Problems
• Reductions between hard isogeny problems. Finding where exactly the 

hardness lies.
• Solving quaternion analogues of isogeny problems.
• Trying to break new hardness assumptions which have some 

additional structure.

• Finding parameters to improve quantum security of isogeny 
schemes.

• Using alternative forms of elliptic curves to speed up isogeny 
schemes or attacks against them.

• Other applications of the link between ideal class groups and 
quadratic forms.
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